The source of perchlorate (ClO4-) in many surface and groundwaters is not known. Recent studies (Parker et al., 2008) suggest that natural production is widespread and common, and may involve atmospheric processes. The isotopic composition of perchlorate chlorine and oxygen has proven useful for identifying anthropogenic/natural perchlorate sources (Bohlke et al, 2005) and for exploring biodegradation in environmental samples (Sturchio et al, 2007). The stable isotope approach, however, requires processing very large volumes of water to obtain milligrams of rigorously separated perchlorate for analysis, limiting its widespread application. Chlorine-36 (36Cl) is a long-lived and rare radionuclide produced cosmogenically in the upper atmosphere. The measurement of 36Cl/Cl by accelerator mass spectrometry (AMS) only requires micrograms of sample chlorine enabling lower volume extractions (less than 1/10th that required for stable isotope techniques), and potentially less rigorous perchlorate chemistry. The primary technical goal of our work is to determine the utility of 36Cl in distinguishing perchlorate source and in constraining mechanisms of natural perchlorate formation. We expect that synthetic perchlorate compounds produced using chloride brines from ancient sources and concentrated modern deposits will have low 36Cl/Cl ratios that will be distinct from natural perchlorate produced in the atmosphere. High levels of 36Cl in groundwater or rainwater perchlorate would then be an unambiguous indication of a natural atmospheric production, and the distribution of 36Cl/Cl in precipitation and groundwater (in conjunction with stable isotope compositions) would constrain the mechanism for natural perchlorate production in the atmosphere. Using accelerator mass spectrometry (AMS), we have measured 36Cl/Cl in a number of synthetic perchlorate salts (including potassium, sodium, magnesium, and ammonium salts). Synthetic salt 36Cl/Cl atom ratios range from 1 to 35 e-15 (consistent with recently reported analyses in Sturchio et al., 2008), and are two to fifteen times the AMS background.

Visit #22421 @Sedgwick Reserve

Approved

Under Project # 22258 | Research

Isotope Forensics of Perchlorate in Groundwater

research_scientist - University of California, Riverside


Reservation Members(s)

Guntram von Kiparski Aug 4 - 5, 2010 (2 days)
Guntram von Kiparski Aug 4 - 5, 2010 (2 days)

Reserve Resources(s) | Create Invoice

Ranch House Not Available 2 Aug 4 - 5, 2010